
Vulnerability Insight -
Remote Code Execution

Brian Fajardo
Department of Computer Science
Montclair State University
Montclair, United States
fajardob1@montclair.edu

Obinna Ezeadum
Department of Computer Science
Montclair State University
Montclair, United States
ezeadumo1@montclair.edu

German Guzman
Department of Computer Science
Montclair State University
Montclair, United States
guzmang3@montclair.edu

Abstract—Software vulnerabilities are a persistent
challenging risk factor that is ubiquitous. It is only upon
successful exploitation of a vulnerability that an attacker can
cause greater harm and essentially create opportunities for
further harm by either using the same attack vector or
combining this attack vector with another in hopes of fulfilling
their goal. This brings us to consider, how do we ensure that
vulnerabilities do not become threats and are exploited? To
answer this question it will require a persistent analytical
approach which will be the main focus of our paper. In
particular we will analyze 23 instances of Remote Code
Execution (RCE) vulnerabilities finding root causes of this
vulnerability type. The methodology used to analyze this data
was to use industry standard resources such as the National
Institute of Standards and Technology (NIST) National
Vulnerability Database (NVD), The MITRE Corporation
Common Weakness Enumeration (CWE), and Common
Vulnerabilities and Exposures (CVE) also provided by MITRE
to name a few. By carefully examining various RCE root
causes, the vulnerability landscape can be reduced providing
security professionals meaningful insight into how to prevent
this vulnerability type from being exploited.

I. INTRODUCTION

From lack of visibility in both the Software Development
Life Cycle (SDLC) and IT infrastructure, software
vulnerabilities present the greatest risk factor to almost anyone
who does not have a transparent and firm control on their
software security, and IT infrastructure. This risk factor can
become very problematic very quickly when left unnoticed
and no action is taken to eliminate the vulnerability. What
makes a vulnerability so problematic then? A vulnerability as
defined by The MITRE Corporation is, “A flaw in a software,
firmware, hardware, or service component resulting from a
weakness that can be exploited, causing a negative impact to
the confidentiality, integrity, or availability of an impacted
component or components.”[1] The words weakness and
exploited go hand in hand here. If a vulnerability is not

exploited successfully then the risk factor is still present but
the risk is lower! In other words you can have a weakness
present but the attack vector is reduced. However the main
dilemma that exists is how can we ensure a vulnerability is not
exploited. The definition of a vulnerability is important to
understand here. Although unsuccessful exploitation of a
vulnerability does not increase risk, risk is still present! This is
why vulnerability and exploit go hand in hand. One depends
on the other to satisfy a certain requirement. This idea served
as motivation for understanding how a vulnerability can still
pose a risk even when it is not exploited. The main dilemma
becomes even more challenging when the issue at hand is
ubiquitous. Software is constantly being developed. Almost
every industry relies on some software for their needs.
Software Developers can introduce vulnerabilities and they
may not even notice it. This is why it is important to
emphasize how impactful software vulnerabilities can be and
the importance of having a transparent and firm control on this
issue. The vulnerability type that we analyzed is RCE or Code
Injection is, “The general term for attack types which consist
of injecting code that is then interpreted/executed by the
application. This type of attack exploits poor handling of
untrusted data. These types of attacks are usually made
possible due to lack of proper input/output data validation.”[2]
RCE vulnerabilities exist in many applications and can have
different weakness types associated with it. One analysis we
found was on the BlueKeep vulnerability.[3] This instance of
vulnerability was discovered initially to have a Denial of
Service (DOS) attack vector. However after several months of
research and further analysis by other security professionals,
it was discovered that BlueKeep could be turned into a
RCE.[4] This is one of the first 23 instances that was analyzed
and provided us an early solid walkthrough of vulnerability
analysis. This related work can be applied to real world
vulnerability analysis which is a common security process that
both small and large enterprise-sized companies employ. We

can apply this process in a future security role where not only
do vulnerabilities need to be identified and analyzed, but also
prioritized based on their risk factors.

II. METHODOLOGY

A. Systems Statistics: The systems that were worked on were
Microsoft Windows NT family of operating systems versions
(XP, Server 2003, Vista, Server 2008, and 7). Other systems
included Microsoft Excel versions 2010 to 2019, Windows
Media Audio Decoder windows versions (7, Server 2008,
Server 2008 R2, Server 2008 Server Core Installation, 8.1, RT
8.1, Server 2012, Server 2012 R2, Server 2012 Server Core
Installation, Server 2012 R2 Server Core Installation, Server
2016, Server 2016 Server Core Installation, 10, and lastly
server versions 1903 Server Core Installation, 1909 Server
Core Installation, Server 2019, Server 2019 Server Core
Installation, and Server version 2004. Other systems included
Cisco Small Business 300 Series (Sx300), MiniShare 1.4.1,
Foxit Software (Studio Photo 3.6.6.913, Phantom PDF
9.7.0.29455, Foxit Reader 9.7.0.29478), ImageMagick 7.0.1-0
/ 6.9.3-9, Nagios-NRPE 2.14, and F5’s BIG-IP Traffic
Management User Interface 16.0.0 and below. Each of these
systems that were studied had different years in which the
associated vulnerability was disclosed for the respective
versions. The years ranged from 2013, 2016, and 2018
through 2020.

B. Vulnerability Collection: The entire process of collection of
vulnerabilities involved investigating and collecting
vulnerability histories such as vulnerability name / CVE ID /
affected versions / fixed version / and information of the
developers. After collecting this information then the next step
was to explore the vulnerable files and their related
descriptions to understand why the vulnerability happened. A
total of 23 instances of RCE vulnerabilities were found. We
found that The MITRE Corporation’s CVE and CWE sites, as
well as NIST’s NVD site provided most of the collection of
information that we wanted to collect. In addition to these
resources CVE Details provided early insight to the specific
vulnerability that was being investigated. For example in one
of the vulnerabilities it was discovered by surprise how the
information reported had not been updated in terms of how the
vulnerability progressed over time. This served not only as a
surprise but also a challenge since vulnerabilities are known to
change like in the case of BlueKeep. This is why we
considered to include CVE Details as a resource since we can
see the before and after picture of how a vulnerability
progresses over time in terms of attack vectors and of course
any impactful advisories such as mitigations or patches to
eliminate the vulnerability from being exploited entirely.
Lastly, many of the investigated vulnerabilities had advisories
and analysis either done independently by the affected
company’s products/systems or cooperatively with other
companies/researchers. This proved to be the most beneficial
scenario for us since not only did it provide more information

because there was a thorough analysis already done but we
were able to see whether any root causes could be connected
with the other instances of RCE vulnerabilities that were
investigated! This helped tremendously with also not having
to search endlessly for information from the RCE instance that
was being investigated since most of the information was
presented to us already.

C. Vulnerability Analysis: Analysis of the vulnerable code to
find out the common patterns consisted of several approaches.
Reviewing the patch files was one approach we conducted
with the instance of BlueKeep. This instance provided a
thorough analysis compared to the other instances we
investigated. For example the author had provided a complete
analysis of why the vulnerability had occurred and even
provided a breakdown of the vulnerable code and patch file
with screenshots that included pre and post patch of the
affected code. We were not able to find such a resource of this
magnitude in time with the other instances. However this is
not to say that the other resources used were not helpful! It
simply means that it provided everything that we needed all
from one site and we only used a few related resources to
expand on what was being explained about BlueKeep to make
sure the information was correct across resources. Other
approaches included analyzing the advisories which included
descriptions of the vulnerable code with some advisories
linking to the patch file itself. This approach made up the
majority of instances we found. For example out of the total of
the 23 instances, 22 instances were analyzed using this
approach compared to BlueKeep where we dug deep to
analyze the vulnerable code and see how the patch file fixed
the affected code. These two approaches, although different,
still provided the necessary information that we ultimately
sought which was to find root causes of RCE vulnerabilities to
support us in our dilemma.

III. RESULTS

A.Findings:

In our findings, we found that the two most common root
causes into an RCE vulnerability were from an improper input

validation error or downloading malicious files; 35% and 43%
of our collection of root causes had these. There are many
ways these root causes could perform an RCE exploitation.

For example a common way that improper input validation is
done is by the uses of functions eval(), system(), and exec() in
PHP code. These functions are known for having sanitization
issues which in turn lead to an RCE[5]. For example:

<?php

$cmd=$_GET['cmd'];

echo exec($cmd);

?>

This code can easily be exploited with a simple code injection;
however, it is very impractical and not used in most real-life
cases unless the coder is very inexperienced.

In a close to real-life example, this code can be exploited:

$ns = $_GET['ns'];

system ("dig @$ns $host $query_type");

In this code example, the variable $ns is unfiltered and can be
injected with the following code command:

“dig.php?ns=||whoami||&host=sirgod.net&query_type=NS&
status=digging”.

When downloading malicious files, an attacker can also
perform an RCE. An attacker can trick a victim to download a
file through email. These emails are usually in the forms of
system updates. One notable instance of an RCE performed
via a malicious file download was the 2017 WannaCry
ransomware. This attack was made possible by sending crafted
messages to vulnerable SMB ports and using DoublePulsar to
install the WannaCry malware. DoublePulsar is described to
be the ‘backdoor’ installed on compromised computers [14].
Once downloaded, WannaCry can perform arbitrary
commands that would hold your data on your computer as
hostage in return for crypto currency. This is done by
encrypting your data, so you are unable to read some valuable
files or locking you out of your computer completely.

WannaCry ransomware note displayed on exploited systems
[21].

In our research, we found that there’s a big leap towards
finding an RCE vulnerability to exploiting the RCE. Such as
finding an RCE that runs commands, there would be different
commands based on the system (Linux or Windows). A hacker
would have to customize these commands. One would have to
write custom exploits, sometimes they are only found in
obscure software on one endpoint. To write an exploit, you
need to understand the vulnerability; what causes it, why it
happens, what is happening on the server side. A hacker must
go through stages like writing code, improving it, and getting
it to work on the server side. To find some ways to exploit an
RCE some hackers chain vulnerabilities. Chained
vulnerabilities are vulnerabilities that have been linked
together to become more than their counterparts. In the search
for common root causes, there was an instance where an
improper input validation could lead to sending a link that
held malicious code. The malicious file could then lead to an
RCE [22].

IV. DISCUSSION

We can see in the results of our findings that out of the 23
RCE instances, the root causes from most common to least
common are 10 instances of malicious files, 8 instances of
improper input validation, 2 instances one from lack of
authentication checks and 2 instances from exploitable
out-of-bounds write, and lastly 1 instance of incomplete
blacklist vulnerability. These common patterns have shown
that that both the attack vector and weakness provides clarity
as to determining the root causes. For example we learned that
in our BlueKeep instance how the root cause was due to
improper input validation resulting from a use-after-free
vulnerability with an identification of CWE-416 [19]. The

Common Weakness Enumeration site provided the weakness
types that are associated with vulnerabilities that are disclosed.
The approach was to correlate the weakness with the specific
RCE instance that was being studied and from there compare
it with the other RCE instances [19] [20]. This provided
concrete evidence in basing our findings for the root causes
and patterns associated with RCE vulnerabilities.

V. THREATS TO VALIDITY

The shortcomings that we think might hamper our results are
that not all RCE vulnerabilities share the same weakness type.
We were very encouraged by our findings with BlueKeep
CVE-2019-0708. However with CVE-2020-1498 it’s
weakness type is different which is CWE-119: Improper
Restriction of Operations within the Bounds of a Memory
Buffer [23] [24]. We learned that this weakness type is
associated with CWE-20: Improper Input Validation labeled as
can follow which means that the weaknesses are actually
associated. [20] [24]. This actually does support our findings
of root causes in RCE vulnerabilities. However the complexity
arises when different attack vectors are introduced and also
when vulnerabilities have been studied over time since more
insight can be discovered that was previously not discovered
before when the vulnerability was first disclosed. The main
idea to understand here is that one cannot simply argue that
most RCE vulnerabilities are caused by improper input
validation resulting from a use-after-free vulnerability. One
must diligently review many instances and compare the
weakness types as well as the attack vectors. Having both of
these metrics in mind will serve well for any security
professional in making informed decisions!

VI. CONCLUSION AND FUTURE PLAN

It takes a whole village for validating and providing analysis
on vulnerabilities. The 23 instances of Remote Code
Execution vulnerabilities that were studied showed how
important it is to understand why a specific vulnerability type
occurs. Although the most common root cause of this
vulnerability type is due to malicious files, there are also more
root causes that can cause an RCE vulnerability to occur like
improper input validation, lack of authentication checks,
exploitable out-of-bounds write, and incomplete blacklist
vulnerability. The vulnerability landscape for RCE
vulnerabilities needs to be approached with a persistent and
analytical approach. One must not only rely on advisories but
also correlate the weakness types and attack vectors that are
associated with each vulnerability type. Having such insight is
meaningful in making informed decisions as well as prioritize
each vulnerability based on their risk factor. Although not
every RCE instance will have the same weakness type, we
learned that some weakness types still correlate with the root
cause that was found for the associated vulnerability. The
future plan would be to always consider having both attack

vectors and weakness types in mind when analyzing a
vulnerability. These metrics will ultimately reduce the
vulnerability landscape and prevent the vulnerability from
being exploited!

REFERENCES

[1] "CVE -Terminology", Cve.mitre.org, 2020. [Online].
Available: https://cve.mitre.org/about/terminology.html.
[Accessed: 05- Dec- 2020].

[2] "Code Injection Software Attack | OWASP Foundation",
Owasp.org, 2020. [Online]. Available:
https://owasp.org/www-community/attacks/Code_Injectio
n. [Accessed: 06- Dec- 2020].

[3] "Analysis of CVE-2019-0708 (BlueKeep) -
MalwareTech", MalwareTech, 2020. [Online]. Available:
https://www.malwaretech.com/2019/05/analysis-of-cve-2
019-0708-bluekeep.html. [Accessed: 06- Dec- 2020].

[4] "BlueKeep: A Journey from DoS to RCE
(CVE-2019-0708) - MalwareTech", MalwareTech, 2020.
[Online]. Available:
https://www.malwaretech.com/2019/09/bluekeep-a-journe
y-from-dos-to-rce-cve-2019-0708.html. [Accessed: 06-
Dec- 2020].

[5] "How to find RCE in scripts (with examples)", Exploit
Database, 2020. [Online]. Available:
https://www.exploit-db.com/papers/12885. [Accessed: 06-
Dec- 2020].

[6] N. Ermishkin, "ImageMagick 7.0.1-0 / 6.9.3-9 -
'ImageTragick ' Multiple Vulnerabilities", Exploit
Database, 2020. [Online]. Available:
https://www.exploit-db.com/exploits/39767. [Accessed:
07- Dec- 2020].

[7] "Security Update Guide - Microsoft Security Response
Center", Msrc.microsoft.com, 2020. [Online]. Available:
https://msrc.microsoft.com/update-guide/en-US/vulnerabi
lity/CVE-2020-1508. [Accessed: 07- Dec- 2020].

[8] "Security Update Guide - Microsoft Security Response
Center", Msrc.microsoft.com, 2020. [Online]. Available:
https://msrc.microsoft.com/update-guide/en-US/vulnerabi
lity/CVE-2020-1498. [Accessed: 07- Dec- 2020].

[9] O. Whitehouse and V. Whitehouse, "Understanding the
root cause of F5 Networks K52145254: TMUI RCE
vulnerability CVE-2020-5902", NCC Group Research,
2020. [Online]. Available:
https://research.nccgroup.com/2020/07/12/understanding-
the-root-cause-of-f5-networks-k52145254-tmui-rce-vulne
rability-cve-2020-5902/. [Accessed: 07- Dec- 2020].

[10] "Security Bulletins | Foxit Software", Foxit, 2020.
[Online]. Available:

https://www.foxitsoftware.com/support/security-bulletins.
html. [Accessed: 07- Dec- 2020].

[11] "ImageTragick", Imagetragick.com, 2020. [Online].
Available:
https://imagetragick.com/#:~:text=There%20are%20multi
ple%20vulnerabilities%20in,being%20used%20in%20the
%20wild. [Accessed: 07- Dec- 2020].

[12] "Remote code execution in Nagios Remote Plug-In
Executor (NRPE)", Cybersecurity-help.cz, 2020.
[Online]. Available:
https://www.cybersecurity-help.cz/vdb/SB2013070909.
[Accessed: 07- Dec- 2020].

[13] 2020. [Online]. Available:
https://support.f5.com/csp/article/K52145254. [Accessed:
07- Dec- 2020].

[14] "What is WannaCry ransomware?", usa.kaspersky.com,
2020. [Online]. Available:
https://usa.kaspersky.com/resource-center/threats/ransom
ware-wannacry. [Accessed: 07- Dec- 2020].

[15] "Create A Bar Chart, Free . Customize, download and
easily share your graph. Just enter the amounts, pick some
colors/fonts, and we'll take it from there!",
Meta-chart.com, 2020. [Online]. Available:
https://www.meta-chart.com/bar. [Accessed: 07- Dec-
2020].

[16] "RDP : Stairway to Networks - K7 Labs", K7 Labs,
2020. [Online]. Available:
https://labs.k7computing.com/?p=19194. [Accessed: 07-
Dec- 2020].

[17] "NVD - CVE-2019-0708", Nvd.nist.gov, 2020. [Online].
Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-0708#match-4
280312. [Accessed: 07- Dec- 2020].

[18] "CVE-2019-0708 : A remote code execution
vulnerability exists in Remote Desktop Services formerly
known as Terminal Services when an unau",
Cvedetails.com, 2020. [Online]. Available:
https://www.cvedetails.com/cve/CVE-2019-0708/.
[Accessed: 07- Dec- 2020].

[19] "CWE - CWE-416: Use After Free (4.2)", Cwe.mitre.org,
2020. [Online]. Available:
https://cwe.mitre.org/data/definitions/416.html.
[Accessed: 07- Dec- 2020].

[20] "CWE - CWE-20: Improper Input Validation (4.2)",
Cwe.mitre.org, 2020. [Online]. Available:
https://cwe.mitre.org/data/definitions/20.html. [Accessed:
07- Dec- 2020].

[21] A. Chiu, "Player 3 Has Entered the Game: Say Hello to
'WannaCry'", Blog.talosintelligence.com, 2020. [Online].
Available:

https://blog.talosintelligence.com/2017/05/wannacry.html.
[Accessed: 07- Dec- 2020].

[22] "Cisco Small Business 300 Series Managed Switches
Authenticated Reflected Cross-Site Scripting
Vulnerability", Tools.cisco.com, 2020. [Online].
Available:
https://tools.cisco.com/security/center/content/CiscoSecur
ityAdvisory/cisco-sa-20180801-sb-rxss. [Accessed: 07-
Dec- 2020].

[23] "NVD - CVE-2020-1498", Nvd.nist.gov, 2020. [Online].
Available:
https://nvd.nist.gov/vuln/detail/CVE-2020-1498.
[Accessed: 07- Dec- 2020].

[24] "CWE - CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer (4.2)",
Cwe.mitre.org, 2020. [Online]. Available:
https://cwe.mitre.org/data/definitions/119.html.
[Accessed: 07- Dec- 2020].

