
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Mitigating Remote Code Execution Vulnerabilities:

A Study on Tomcat and Android Security Updates

Stephen Bier1, Brian Fajardo2, Obinna Ezeadum3, German Guzman4, Kazi Zakia Sultana5, Vaibhav Anu6

Department of Computer Science

Montclair State University

Montclair, New Jersey, USA

{biers11, fajardob12, ezeadumo13, guzmang34, sultanak5, anuv6}@montclair.edu

Abstract—The security of web-applications has become

increasingly important in recent years as their popularity has

grown exponentially. More and more web-based enterprise

applications deal with sensitive personal and private

information, which, if compromised, can not only lead to system

downtime, but can also cause mean millions of dollars in

damages to the organization. It is critical to protect web-

applications from the constant onslaught of hacker attacks.

Remote Code Execution (RCE) attacks are one of the most

prominent security threats for software systems, especially

Java-based systems. In the current study, we have studied the

security update reports for RCE vulnerabilities published by

two Java-based projects: Apache Tomcat and Android. We

analyzed and categorized the code-fixes (i.e., patches/updates)

that were applied to mitigate/fix fifty-one (51) RCE

vulnerabilities in the two above-mentioned Java projects. Our

analysis showed that a significant majority of the RCE

vulnerabilities found in Java projects can be mitigated with just

five (5) types/categories of code-fixes. Overall, our goal was to

study RCE vulnerabilities in an effort to provide programmers

with a handy list of code-fixes, thus making it easier for them to

effectively mitigate known RCE vulnerabilities in their own

Java-based applications.

Keywords—software security, software engineering,

vulnerabilities, remote code execution, open source software

I. INTRODUCTION

Software security bugs, also known as vulnerabilities,
continue to be an important and potentially the most expensive
issue affecting all aspects of our cyber society. There has been
significant research effort toward preventing vulnerabilities
from occurring in the first place, as well as toward
automatically discovering vulnerabilities, but so far these
results remain fairly limited [15, 16].

Remote Code Execution (RCE) has been recognized as
one of the most harmful threats for web applications [1].
Although RCE is a special kind of cross-site scripting attack,
RCE attacks have some variants including requiring state
consideration of both server and client, both string and non-
string manipulation of client inputs, and involving multiple
requests to more than one server-side scripts [1]. Static
analysis tools can be potentially used for detecting
vulnerabilities [17, 18, 19]. Static code analysis tools locate
vulnerabilities within source code using data flow analysis or
taint analysis techniques [20]. As RCE attacks mostly depend
on path conditions and involve both string and non-string
operations, most static analysis tools fail to detect RCE attacks
as they follow context free grammar and model only string
operations [21, 22]. As a result, the false positive rates are high
in those tools. On the other hand, the existing literatures do not
focus on how RCE vulnerabilities have been resolved in real

world applications so that developers can have a handy list of
techniques to mitigate those problems.

In this paper, we focus on identifying the various ways
developers (i.e., programmers) mitigate/fix RCE
vulnerabilities that are reported in Java-based software
systems (fixing a reported or known security vulnerability is
more commonly referred to as security update or patch and is
generally done by changing/adding/deleting lines of code).

In a sense, the primary objective of this study is to identify
the most common types of code changes (i.e.,
updates/patches) that are applied by programmers when RCE
vulnerabilities are reported in their software. To meet our
objective, we reviewed different systems that publish security
update reports and determine if there are any similarities in the
RCE vulnerabilities and the updates that were implemented to
fix them. In our research, we reviewed security updates reports
for Apache Tomcat and Android. The major contributions of
our work have been stated below:

1. The study is conducted on two major Java-based
systems: Apache Tomcat and Android. The study has
identified the most frequently used mitigation
techniques for fixing RCE vulnerabilities that can be
exemplary for Java based software developers.

2. We anticipate the findings in this study may be of
assistance to the developers in avoiding frequent
programming mistakes that can lead to RCE attacks.

3. The common security updates discussed in this paper
will help the developers to mitigate (or fix) RCE
issues and thus reduce the likelihood of RCE attacks
in the future.

In Section II, we discuss some related works to our study.
Section III describes our research methodology. Section IV
focuses on data analysis and results. In Section V, we discuss
the limitations of our work. Section VI provides a brief
discussion on the implications of our findings and finally
Section VII concludes the paper with some future plan.

II. RELATED WORK

In this section, we highlight some existing works that
focused on remote code execution (RCE) vulnerability
analysis and detection.

Remote Code Execution is considered as a special kind of
Cross Site Scripting (XSS) attacks [1]. Like XSS and SQL
injection attacks, RCE occurs when invalid client-side inputs
are undesirably converted to scripts and executed [1].
Although researchers have already put significant efforts on
identifying and mitigating XSS and SQL injections
vulnerabilities [2-7], RCE vulnerability got very little

attention due to its unique characteristics [1]. Zheng et al. [1]
proposed a path and context sensitive inter procedural static
analysis to detect RCE vulnerabilities in PHP scripts. They
devised a novel algorithm featuring both string and non-string
behavior of a program and successfully could detect RCE
vulnerabilities in PHP scripts with less false positive rates [1].
In another study [8], the authors assessed the multi-variant
code execution technique to prevent the execution of
malicious code. The idea of multi-variant code execution is
detecting any malicious attempt during run-time. While
running two or more slightly different variants of the same
program in lockstep on a multiprocessor, the variants are
monitored and any divergence from the regular behavior
raises an alarm indicating the possible anomaly. The trade-off
between security and performance is the major limitation of
this approach [8]. Hannes et al. [9] studied expert opinions on
how three variable (i) non-executable memory, (ii) access and
(iii) exploits for High or Medium vulnerabilities as defined by
the Common Vulnerability Scoring System contribute to the
successful remote code execution attacks. Both access and the
severity of the exploited vulnerability were perceived as
important by the experts; non-executable memory was not
seen as relevant to RCE according to the study [9]. In [10], the
authors presented a case study on RCE vulnerability and
analyzed different types of RCE and their impact on
applications. Another paper [13] proposed a new mechanism
for trusted code remote execution. The method creates a
trusted platform integrating the identity authentication,
platform authentication and behavior authentication based on
trusted computing technology, remote attestation and trusted
behavior for remote code execution [13]. There are some other
research studies on remote code execution which focused on
remote code execution vulnerabilities in specific domains or
platforms [11, 12, 14].

Overall, there is a shortage of research on modeling of
discovered security vulnerabilities to capture how and why an
implementation fails to achieve the desired level of security.
This paper analyzes some real vulnerable code and their fixes
so that programmers can be aware of those frequently
happened programming mistakes and are aware of their
possible mitigation techniques.

More specifically, we focused on Java-based applications
and identified common code changes/fixes that are used to
mitigate RCE vulnerabilities (which has not been investigated
in earlier research). Most of the previous studies either devised
techniques to prevent RCE or detect RCE during runtime.
Those studies lack in highlighting some common
programming practices that are used by developers to fix RCE
vulnerabilities. In our study, we present RCE updates/fixes so
that developers can be guided during the maintenance phase
and can ensure future software releases are secure.

III. METHODOLOGY

This section describes the Research Questions (RQs) and
the data collection process for this study.

A. Research Questions

The following research questions were formulated to
guide the data collection for this study:

RQ1: Do software systems suffer from Remote Code
Execution (RCE) vulnerabilities more frequently when
compared to the other types of security vulnerabilities?

RQ2: What types of patches (i.e., code-fixes) are usually
added to mitigate the known RCE vulnerabilities in Java-
based software systems?

B. Data Collection

The following paragraphs describe the data that we
collected to answer the two research questions (RQs).

To answer RQ1, we collected the vulnerability-counts for
the last 5 years (2015 to 2019) for the most common types of
vulnerabilities (RCE, Denial of Service, Overflow, XSS, SQL
injection) reported to a vulnerability datasource called CVE
Details (https://www.cvedetails.com/).

With respect to RQ2, we focused specifically on collecting
information about Remote Code Execution (RCE)
vulnerabilities reported in Java-based software projects.
Furthermore, we wanted to collect information about how
programmers fix the RCE vulnerabilities reported in their
Java-based software systems. Many open-source software
projects publish security update reports on their project
websites (for example, the security reports for Apache Tomcat
are publicly available and can be found here:
http://tomcat.apache.org/security.html).

We identified two such open-source Java-based software
projects: Apache Tomcat (mentioned above) and Android
(https://source.android.com/security/bulletin). An overview
of the steps taken to collect the code-fixes (i.e., patched)
applied to fix RCE vulnerabilities reported in each of the two
systems is provided below:

1) Apache Tomcat Data Collection
To gather the data from Tomcat, we first went to the

Tomcat’s Security Reports page:
http://tomcat.apache.org/security.html. This page displays a
list of the known security vulnerabilities for each version of
Tomcat as illustrated in Fig. 1. Tomcat Release 3.x was
selected and all the Remote Code Execution (RCE) updates
within this release were identified and reviewed. This was the
most time and effort intensive step of our data collection
process. Please note that our goal was to collect information
regarding what kind of updates (i.e., patches or code-fixes) are
applied by the programmers to known RCE vulnerabilities.
Therefore, for each RCE update found during our search, the
revision number was selected as presented in the information
page for that particular revision. Fig. 2 contains the

Fig.1. Tomcat: Security Updates

information page for Revision 1809921. As can be seen in Fig.
2, each revision page contains a “path changed” link which in
turn contains the line(s) of code that were added and/or
removed to fix/mitigate the reported RCE vulnerability.

Table I presents a sample set of RCE vulnerabilities in
Apache Tomcat that were identified and investigated during
this study.

2) Android Data Collection
Similar to Tomcat, for Android we reviewed the Security

Bulletins page of the Android website
(https://source.android.com/security/bulletin). From here we
selected a year and month from the dropdown on the left side
of the webpage as shown in Fig. 3. Next, we searched for RCE
updates (see Fig. 4) and clicked on the selected reference
number which brought up the information page for that
specific update. The information page for a sample RCE
update is shown in Fig. 5. By selecting the “diff” link
(highlighted in yellow in Fig. 5), a page containing the code
that was added and/or changed to fix/mitigate the reported
RCE vulnerability was displayed.

Following the data collection process described above, we
collected a total of fifty-one (51) RCE updates/patches
(including both the systems, Tomcat and Android). We
analyzed these patches to understand if there are certain
frequently used patterns in these RCE updates/patches. The
data analysis conducted using the above-mentioned 51 RCE
updates/patches is presented in Section IV. B.

IV. DATA ANALYSIS AND RESULTS

This section presents the results and findings obtained
from analyzing the data collected during this study. This
section is organized around the two research questions (RQs)
that were described in Section III.A.

A. RQ1: Do software systems suffer from Remote Code

Execution (RCE) vulnerabilities more frequently when

compared to the other types of security vulnerabilities?

As mentioned before, we hypothesized that RCE
vulnerabilities are the most frequently found vulnerabilities in
software systems. In order to evaluate our hypothesis, we
collected the vulnerability-count data from the
“CVEDetails.com” datasource. This datasource receives its
vulnerability data through National Vulnerability Database
(NVD) xml feeds provided by NIST (National Institute of
Standards and Technology). We collected the vulnerability-
count data for the top-5 vulnerability types for the recent five
(5) years, i.e., from the year 2015 to 2019 (please note that
currently the CVEDetails datasource has vulnerability-count
data till the year 2019).

Fig. 6 provides an overview of the data analyzed for RQ1.
As can be seen in Fig. 6, RCE vulnerabilities were reported
more frequently than other types of vulnerabilities during the
years 2015, 2018, and 2019. Even during the other years (2016
and 2017), RCE vulnerabilities remained in the top-2 most
reported vulnerabilities.

Furthermore, in the year 2019, the count of reported RCE
vulnerabilities (2277) was significantly higher than the count
of next most reported vulnerability (1593 Cross-Site Scripting

Fig.2. Tomcat: Security Update Details for a Sample RCE Vulnerability

found in Tomcat

Fig.3. Android: Security Update Reports (Listed by Year)

Fig.4. Android: Identifying RCE Vulnerabilities and their Respective

Updates/Patches

Fig.5. Android: Security Update Details for a Sample RCE

Vulnerability found in Android

TABLE I. TOMCAT: SAMPLE SET OF RCE VULNERABILITY

PATCHES/UPDATES THAT WERE FOUND AND STUDIED

Common Vulnerabilities and

Exposures No. (CVE No.)

Affected

Versions

Fixed

version

2013-4444 7 7.0.39

2016-8735 7, 8, 9 9.0.0.M12

2017-12615 7 7.0.80

2017-12617 7, 8, 9 9.0.0.M15

2019-0232 7, 8, 9 9.0.17

vulnerabilities were reported). Therefore, 35.3% of all the
vulnerabilities reported during the year 2019 were of the type
RCE (as can be seen in Fig. 6).

The data analysis described above and displayed in Fig. 6
clearly shows that software systems often suffer from RCE
vulnerabilities more frequently than the other types of
vulnerabilities. This in turn leads to a frequent need for
programmers to fix RCE vulnerabilities through
adding/editing lines of code in their software systems (i.e.,
adding updates/patches to mitigate the reported RCE
vulnerabilities). This motivated us to identify some common
patterns that are used by programmers when they are trying to
fix the RCE vulnerabilities (with a focus on RCE
vulnerabilities in Java-based software systems). The next
section describes some of the patterns that we identified
during this study.

B. RQ2: What types of patches (i.e., code-fixes) are usually

added to mitigate the known RCE vulnerabilities in

Java-based software systems?

As described in Section III.B (Data Collection), we
identified a total of fifty-one (51) patches/updates that were
made to fix RCE vulnerabilities in two Java-based software
projects (Tomcat and Android). These patches are essentially
changes/edits that made to lines of code to mitigate or fix a
reported security vulnerability. Our primary goal with RQ2
was to identify and list some code-fix patterns that were used
frequently to mitigate reported RCE vulnerabilities.

For a study such as ours, projects such as Tomcat and
Android are a great resource as they highlight exactly what
code changes/edits were made in order to fix a vulnerability.
As an example, in Fig. 7, in order to fix the vulnerability titled
CVE-2019-0232, the following variable was added:
cgiServlet.invalidArgumentDecoded.

Similar to the process described above, we analyzed the
updates/patches (i.e., code changes) that were applied to all
fifty-one (51) RCE vulnerabilities that were part of this study.

Next, in order to find if there were similarities (i.e.,
patterns) between the coding changes that were made by the
programmers in order to fix the RCE vulnerabilities, we
converted the code-changes (patches/updates) into
pseudocode. After converting the code-changes into
pseudocode, we found that the code-changes (patches) could
be classified into five (5) categories or patterns.

The five types of code-changes or updates (identified as a
result of our analysis of 51 RCE vulnerabilities) that can be
used to fix or mitigate a majority of RCE vulnerabilities are
described as follows:

RCE Update Type 1 – Check if the Packet Size is a
Positive Integer: For this update the programmer added an If
Statement to check that the packet size was a positive integer
(i.e., not negative or zero). That is, check if the source buffer
contained enough bytes to copy the packet and check that the
packet size does not exceed the destination buffer. The
pseudocode for this type of update is shown in Table II.

RCE Update Type 2 – Checking for the Proper Variable
Size: Another common update made by the programmers was
that they checked for the proper size. In this If statement, they
check if the variable is greater than the max size. And if the
variable is greater than the max size, then set the variable to
the max size. The pseudocode for this type of update is shown
in Table III.

RCE Update Type 3 – Applying an Offset: In many
reported RCE vulnerabilities, it was found that the buffer is
not properly calculated causing a memory overflow. To fix
this, they adjusted the calculation by dividing the offset. The
pseudocode for this type of update is shown in Table IV.

RCE Update Type 4 – In another commonly used
patch/update for RCE vulnerabilities, the programmer moved
the If Statement to the top. The intention is to run the fail-
check before creating a new class and assigning the size. The
pseudocode for this type of update is shown in Table V.

RCE Update Type 5 – If statement to prevent out of
bounds in the function: In another common patch/update, the
programmer added an If statement to check validity of
pSettings->noOfPatches to prevent out of bounds in the
function, which can also cause the memory size to be negative.

Fig. 6. Vulnerability-count by Type (for five recent years)

Fig. 7. Code Change (or Patch) Applied to Fix/Mitigate an RCE
Vulnerability (CVE-2019-0232) in Apache Tomcat

TABLE II. RCE UPDATE TYPE 1

Pseudocode for RCE Update Type 1

if ((size <= 0) || ((read - sizeof(var1) - sizeof(var2)) < size) || (sizeof(msg)

< size)) {
 return -1;

}

TABLE III. RCE UPDATE TYPE 2

Pseudocode for RCE Update Type 2

if (result->num_val > MAX_ATTR_SIZE) {

 errorWriteLog;
 result->num_val = MAX_ATTR_SIZE;

}

TABLE IV. RCE UPDATE TYPE 3

Pseudocode for RCE Update Type 3

display->buffer = buffer + (offset / FACTOR);

The pseudocode for this type of update (i.e., Update Type 5)
is shown in Table VI.

As is evident from the above-mentioned five commonly
used updates/patches, most of the code updates was to account
for changes in size of boundaries and buffers. When the size
was not properly accounted for, it caused errors in the
application which in turn leads to a potential for bad actors to
perpetrate a Remote Code Execution (RCE) attack.

Overall, we believe that the five update types that we have
identified can provide a good starting point for programmers
when they are trying to fix/mitigate reported RCE
vulnerabilities in their Java-based software systems. We
anticipate that a list of commonly used updates/patches (such
as the one presented in this study) can improve the efficiency
of programmers when they are trying to determine the best
way to fix vulnerable code in their software system.

V. THREATS TO VALIDITY

In this section, we describe the major threats to the validity
of the results found in this study.

One major validity threat is to the generalizability of our
results. This is because we have studied RCE vulnerabilities
and their respective updates/patches in a limited number of
systems (two systems, Tomcat and Android). Owing to this,
even though we have been able to locate some viable fixes
(i.e., updates/patches) for RCE, they may not resolve each and
every RCE vulnerability. Through our study we saw that many
instances of RCE vulnerabilities can be mitigated by fixing
buffering and boundary issues. At this time, our research is
limited to Tomcat and Android, and thus there are likely other
instances of RCE vulnerabilities and their respective
updates/patches that we have not come across in our research.

Another limitation arises from the unavailability of public
vulnerability datasets for software projects. Most software
projects do not make their vulnerabilities and related fixes
public (with a few exceptions such as Android and Tomcat).
The scarcity of vulnerable dataset makes any vulnerability
related research challenging.

The authors also note that our findings do not guarantee
prevention against an RCE attack from a malicious actor (i.e.,
attacker). Our goal is simply to provide a readily usable list of
updates/patches that can be potentially employed for fixing
RCE vulnerabilities. The final decision about using the most
appropriate update/patch has to be made by the programmer
by conducting a thorough evaluation of the vulnerability they
are trying to fix.

VI. DISCUSSION ON IMPLICATION OF RESULTS

In this section we provide a brief discussion about the
implications of our findings on programming practices that
lead to injection of RCE vulnerabilities. Although, our main
goal in this study was to identify what kind of code-changes
(i.e., updates/patches) are commonly used to fix RCE
vulnerabilities, our data analysis also highlighted some
weaknesses or issues in coding practices (when the software
systems are being developed). The paragraphs below provide
a discussion related to such bad coding/programming
practices that lead to injection of RCE vulnerabilities when the
software is being developed.

Overall, we found that the vulnerability landscape for
remote code execution (RCE) needs to be approached with a

persistent and analytical approach. We must not only rely on
advisories but also correlate the weakness types and attack
vectors that are associated with each vulnerability type.
Having such insight is meaningful in making informed
decisions as well as prioritize each vulnerability based on their
risk factor. Although not every RCE instance will have the
same weakness type, we learned that some weakness types
still correlate with the root causes that were found for the
associated vulnerability. Our research was able to successfully
identify a root cause (size of boundaries and buffers) that
frequently leads to injection of RCE vulnerabilities.

Our research has shown that the opportunity for RCE
vulnerabilities can be reduced by simply ensuring that buffers
and boundaries are developed with proper sizing. With this is
mind, developers can develop more efficient code and avoid
at least some of the on-going RCE attacks being deployed by
hackers worldwide.

VII. CONCLUSION AND FUTURE WORK

We have conducted a detailed analysis of the
updates/patches (i.e., code-changes) that were applied by
programmers to mitigate/fix fifty-one (51) RCE
vulnerabilities reported in two Java-based software projects:
Apache Tomcat and Android.

Based on our analysis, we proposed a list of five common
updates/patches (see Table II through Table VI) that can be
used to mitigate or fix a significant majority of RCE
vulnerabilities in Java-based systems. We believe that our
findings about these common RCE updates/patches can be
handy and readily-usable when programmers are trying to
determine ways or means to fix RCE vulnerabilities in their
own system. Therefore, we anticipate that our list of common
RCE updates (shown in Tables II to VI) will help in reducing
the time that is required by programmers to fix RCE
vulnerabilities that have been reported in their system. To our

TABLE V. RCE UPDATE TYPE 4

Pseudocode for RCE Update Type 4

status = function();

 if (status != SUCCESS) {

 variable1 = NULL;

 return ERROR;
 }

variable1 = new class;

variable1->size = sizeof(object);

TABLE VI. RCE UPDATE TYPE 5

Pseudocode for RCE Update Type 5

if (noOfPatches > 0) {

 int target = array[x].targetStartBand + array[x].numBandsInPatch;

 int size = (64 - target) * sizeof(FIXP_DBL);

 if (!useLP) {
 for (i = startSample; i < stopSampleClear; i++) {

 function1(&array2[i][target], size);

 function1(&array3[i][target], size);
 }

 } else

 for (i = startSample; i < stopSampleClear; i++) {
 function1(&array2[i][target], size);

 }

}

knowledge, this is the first study of its kind that has focused
on analyzing RCE vulnerabilities and their relevant
updates/patches.

The results from this initial investigation are anticipated to
be beneficial in reducing RCE attacks and hence the results
motivate further research in the area. We plan to extend our
research to other programming languages and systems to
determine if such update (i.e., code-fix) patterns exist in
systems coded in languages such as Python, PHP, C#, etc.
Once this research is extended to other languages and systems,
the natural evolution of this research is to study more
vulnerabilities such as Elevation of Privilege, Information
Disclosure, and SQL Injection in the future. In closing, our
intent is to continue to learn about the nature of vulnerabilities
and how to mitigate/fix them so that we may enhance our
research to help prevent future exploits or attacks.

ACKNOWLEDGMENT

The co-authors on this paper, Dr. Kazi Zakia Sultana and Dr. Vaibhav
Anu have grant funding from the National Science Foundation (NSF) of the
USA through an REU grant.

REFERENCES

[1] Y. Zheng and X. Zhang, “Path sensitive static analysis of web
applications for remote code execution vulnerability detection,” 2013
35th International Conference on Software Engineering (ICSE), San
Francisco, CA, USA, 2013, pp. 652-661

[2] D. Bates, A. Barth and C. Jackson, “Regular expressions considered
harmful in client-side XSS filters,” In Proceedings of the 19th
international conference on World wide web (WWW '10). NC, USA,
2010, pp. 91–100.

[3] M. V. Gundy and H. Chen, “Noncespaces: Using Randomization to
Enforce Information Flow Tracking and Thwart Cross-Site Scripting
Attacks,” In Proceedings of the Network and Distributed System
Security Symposium, San Diego, California, USA, 2009.

[4] W. Halfond and A. Orso, “Preventing SQL injection attacks using
AMNESIA,” In Proceedings of the 28th international conference on
Software engineering, Shanghai, China, 2006, pp. 795-798.

[5] M. T. Louw and V. N. Venkatakrishnan, “Blueprint: Robust Prevention
of Cross-site Scripting Attacks for Existing Browsers,” 2009 30th IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 2009, pp.
331-346.

[6] Y. Nadji, P. Saxena and D. Song, “Document Structure Integrity: A
Robust Basis for Cross-site Scripting Defense,” In Proceedings of the
Network and Distributed System Security Symposium, San Diego,
California, USA, 2009.

[7] G. Wassermann and Z. Su, “Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities,” In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '07), San Diego, California, USA, 2007, pp. 32-
41.

[8] Todd Jackson, Babak Salamat, Gregor Wagner, Christian Wimmer,
and Michael Franz, “On the effectiveness of multi-variant program

execution for vulnerability detection and prevention,” In Proceedings
of the 6th International Workshop on Security Measurements and
Metrics (MetriSec '10), Bolzano, Italy, 2010, pp. 1-8.

[9] H. Holm, T. Sommestad, U. Franke and M. Ekstedt. “Success Rate of
Remote Code Execution Attacks - Expert Assessments and
Observations,” Journal of Universal Computer Science, vol. 18, pp.
732-749, 2012.

[10] S. Biswas, M. Sohel, M. Sajal, Md. Mizanur, T. Afrin, T. Bhuiyan, and
M. Hassan, “A Study on Remote Code Execution Vulnerability in Web
Applications,” International Conference on Cyber Security and
Computer Science (ICONCS’18), Oct 18-20, 2018, Safranbolu,
Turkey.

[11] Q. H. Mahmoud, D. Kauling and S. Zanin, “Hidden android
permissions: Remote code execution and shell access using a live
wallpaper,” 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, 2017, pp. 599- 600.

[12] S. Mohammad and S. Pourdavar, “Penetration test: A case study on
remote command execution security hole,” 2010 Fifth International
Conference on Digital Information Management (ICDIM), Thunder
Bay, ON, 2010, pp. 412-416.

[13] L. Zhang, H. Zhang, X. Zhang and L. Chen, “A New Mechanism for
Trusted Code Remote Execution,” 2007 International Conference on
Computational Intelligence and Security Workshops (CISW 2007),
Heilongjiang, 2007, pp. 574-578.

[14] M. Carlisle and B. Fagin, “IRONSIDES: DNS with no single-packet
denial of service or remote code execution vulnerabilities,” 2012 IEEE
Global Communications Conference (GLOBECOM), Anaheim, CA,
2012, pp. 839-844.

[15] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek,
“Hackers vs. Testers: A Comparison of SoftwareVulnerability
Discovery Processes,” 2018 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 2018, pp. 374-391.

[16] A. Austin and L. Williams, “One Technique Is Not Enough: A
Comparison of Vulnerability Discovery Techniques,” 2011
International Symposium on Empirical Software Engineering and
Measurement, Banff, AB, Canada, 2011, pp. 97-106.

[17] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer and M. D. Ernst.
“HAMPI: a solver for string constraints,” ACM Trans. Softw. Eng.
Methodol., vol. 21, no. 4, Article 25, 2013.

[18] W. Halfond, S. Anand and A. Orso. “Precise Interface Identification to
Improve Testing and Analysis of Web Applications,” In Proceedings
of the eighteenth international symposium on Software testing and
analysis (ISSTA '09), Chicago, IL, USA, 2009, pp. 285-296.

[19] Dinis Cruz, “OWASP O2 Platform - Open Platform for Automating
Application Security Knowledge and Workflows”, Web Application
Security Conference, 2010, pp. 5-5.

[20] S. Tyagi and K. Kumar, “Evaluation of Static Web Vulnerability
Analysis Tools,” 2018 Fifth International Conference on Parallel,
Distributed and Grid Computing (PDGC), Solan, India, 2018, pp. 1-6.

[21] Y. Xie and A. Aiken. “Saturn: A scalable framework for error detection
using Boolean satisfiability,” In ACM Trans. Program. Lang. Syst.
May, 2007, vol. 29, no. 3, pp. 16–es.

[22] M. Das, S. Lerner, M. Seigel. “ESP: path-sensitive program
verification in polynomial time,” In Proceedings of the ACM SIGPLAN
2002 conference on Programming language design and
implementation (PLDI '02), 2002, Berlin, Germany, pp. 57-68.

