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Abstract—The security of web-applications has become 

increasingly important in recent years as their popularity has 

grown exponentially. More and more web-based enterprise 

applications deal with sensitive personal and private 

information, which, if compromised, can not only lead to system 

downtime, but can also cause mean millions of dollars in 

damages to the organization. It is critical to protect web-

applications from the constant onslaught of hacker attacks. 

Remote Code Execution (RCE) attacks are one of the most 

prominent security threats for software systems, especially 

Java-based systems. In the current study, we have studied the 

security update reports for RCE vulnerabilities published by 

two Java-based projects: Apache Tomcat and Android. We 

analyzed and categorized the code-fixes (i.e., patches/updates) 

that were applied to mitigate/fix fifty-one (51) RCE 

vulnerabilities in the two above-mentioned Java projects. Our 

analysis showed that a significant majority of the RCE 

vulnerabilities found in Java projects can be mitigated with just 

five (5) types/categories of code-fixes. Overall, our goal was to 

study RCE vulnerabilities in an effort to provide programmers 

with a handy list of code-fixes, thus making it easier for them to 

effectively mitigate known RCE vulnerabilities in their own 

Java-based applications. 
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I. INTRODUCTION 

Software security bugs, also known as vulnerabilities, 
continue to be an important and potentially the most expensive 
issue affecting all aspects of our cyber society. There has been 
significant research effort toward preventing vulnerabilities 
from occurring in the first place, as well as toward 
automatically discovering vulnerabilities, but so far these 
results remain fairly limited [15, 16].  

Remote Code Execution (RCE) has been recognized as 
one of the most harmful threats for web applications [1]. 
Although RCE is a special kind of cross-site scripting attack, 
RCE attacks have some variants including requiring state 
consideration of both server and client, both string and non-
string manipulation of client inputs, and involving multiple 
requests to more than one server-side scripts [1]. Static 
analysis tools can be potentially used for detecting 
vulnerabilities [17, 18, 19]. Static code analysis tools locate 
vulnerabilities within source code using data flow analysis or 
taint analysis techniques [20]. As RCE attacks mostly depend 
on path conditions and involve both string and non-string 
operations, most static analysis tools fail to detect RCE attacks 
as they follow context free grammar and model only string 
operations [21, 22]. As a result, the false positive rates are high 
in those tools. On the other hand, the existing literatures do not 
focus on how RCE vulnerabilities have been resolved in real 

world applications so that developers can have a handy list of 
techniques to mitigate those problems. 

In this paper, we focus on identifying the various ways 
developers (i.e., programmers) mitigate/fix RCE 
vulnerabilities that are reported in Java-based software 
systems (fixing a reported or known security vulnerability is 
more commonly referred to as security update or patch and is 
generally done by changing/adding/deleting lines of code).  

In a sense, the primary objective of this study is to identify 
the most common types of code changes (i.e., 
updates/patches) that are applied by programmers when RCE 
vulnerabilities are reported in their software. To meet our 
objective, we reviewed different systems that publish security 
update reports and determine if there are any similarities in the 
RCE vulnerabilities and the updates that were implemented to 
fix them. In our research, we reviewed security updates reports 
for Apache Tomcat and Android. The major contributions of 
our work have been stated below: 

1. The study is conducted on two major Java-based 
systems: Apache Tomcat and Android. The study has 
identified the most frequently used mitigation 
techniques for fixing RCE vulnerabilities that can be 
exemplary for Java based software developers.  

2. We anticipate the findings in this study may be of 
assistance to the developers in avoiding frequent 
programming mistakes that can lead to RCE attacks.  

3. The common security updates discussed in this paper 
will help the developers to mitigate (or fix) RCE 
issues and thus reduce the likelihood of RCE attacks 
in the future.  

In Section II, we discuss some related works to our study. 
Section III describes our research methodology. Section IV 
focuses on data analysis and results. In Section V, we discuss 
the limitations of our work. Section VI provides a brief 
discussion on the implications of our findings and finally 
Section VII concludes the paper with some future plan.  

II. RELATED WORK 

In this section, we highlight some existing works that 
focused on remote code execution (RCE) vulnerability 
analysis and detection. 

Remote Code Execution is considered as a special kind of 
Cross Site Scripting (XSS) attacks [1]. Like XSS and SQL 
injection attacks, RCE occurs when invalid client-side inputs 
are undesirably converted to scripts and executed [1]. 
Although researchers have already put significant efforts on 
identifying and mitigating XSS and SQL injections 
vulnerabilities [2-7], RCE vulnerability got very little 



attention due to its unique characteristics [1]. Zheng et al. [1] 
proposed a path and context sensitive inter procedural static 
analysis to detect RCE vulnerabilities in PHP scripts. They 
devised a novel algorithm featuring both string and non-string 
behavior of a program and successfully could detect RCE 
vulnerabilities in PHP scripts with less false positive rates [1]. 
In another study [8], the authors assessed the multi-variant 
code execution technique to prevent the execution of 
malicious code. The idea of multi-variant code execution is 
detecting any malicious attempt during run-time. While 
running two or more slightly different variants of the same 
program in lockstep on a multiprocessor, the variants are 
monitored and any divergence from the regular behavior 
raises an alarm indicating the possible anomaly. The trade-off 
between security and performance is the major limitation of 
this approach [8]. Hannes et al. [9] studied expert opinions on 
how three variable (i) non-executable memory, (ii) access and 
(iii) exploits for High or Medium vulnerabilities as defined by 
the Common Vulnerability Scoring System contribute to the 
successful remote code execution attacks. Both access and the 
severity of the exploited vulnerability were perceived as 
important by the experts; non-executable memory was not 
seen as relevant to RCE according to the study [9]. In [10], the 
authors presented a case study on RCE vulnerability and 
analyzed different types of RCE and their impact on 
applications. Another paper [13] proposed a new mechanism 
for trusted code remote execution. The method creates a 
trusted platform integrating the identity authentication, 
platform authentication and behavior authentication based on 
trusted computing technology, remote attestation and trusted 
behavior for remote code execution [13]. There are some other 
research studies on remote code execution which focused on 
remote code execution vulnerabilities in specific domains or 
platforms [11, 12, 14]. 

Overall, there is a shortage of research on modeling of 
discovered security vulnerabilities to capture how and why an 
implementation fails to achieve the desired level of security. 
This paper analyzes some real vulnerable code and their fixes 
so that programmers can be aware of those frequently 
happened programming mistakes and are aware of their 
possible mitigation techniques.  

More specifically, we focused on Java-based applications 
and identified common code changes/fixes that are used to 
mitigate RCE vulnerabilities (which has not been investigated 
in earlier research). Most of the previous studies either devised 
techniques to prevent RCE or detect RCE during runtime. 
Those studies lack in highlighting some common 
programming practices that are used by developers to fix RCE 
vulnerabilities. In our study, we present RCE updates/fixes so 
that developers can be guided during the maintenance phase 
and can ensure future software releases are secure.    

III. METHODOLOGY 

This section describes the Research Questions (RQs) and 
the data collection process for this study.  

A. Research Questions 

The following research questions were formulated to 
guide the data collection for this study: 

RQ1: Do software systems suffer from Remote Code 
Execution (RCE) vulnerabilities more frequently when 
compared to the other types of security vulnerabilities? 

RQ2: What types of patches (i.e., code-fixes) are usually 
added to mitigate the known RCE vulnerabilities in Java-
based software systems? 

B. Data Collection 

The following paragraphs describe the data that we 
collected to answer the two research questions (RQs). 

To answer RQ1, we collected the vulnerability-counts for 
the last 5 years (2015 to 2019) for the most common types of 
vulnerabilities (RCE, Denial of Service, Overflow, XSS, SQL 
injection) reported to a vulnerability datasource called CVE 
Details (https://www.cvedetails.com/). 

With respect to RQ2, we focused specifically on collecting 
information about Remote Code Execution (RCE) 
vulnerabilities reported in Java-based software projects. 
Furthermore, we wanted to collect information about how 
programmers fix the RCE vulnerabilities reported in their 
Java-based software systems. Many open-source software 
projects publish security update reports on their project 
websites (for example, the security reports for Apache Tomcat 
are publicly available and can be found here: 
http://tomcat.apache.org/security.html).  

We identified two such open-source Java-based software 
projects: Apache Tomcat (mentioned above) and Android 
(https://source.android.com/security/bulletin). An overview 
of the steps taken to collect the code-fixes (i.e., patched) 
applied to fix RCE vulnerabilities reported in each of the two 
systems is provided below: 

1) Apache Tomcat Data Collection 
To gather the data from Tomcat, we first went to the 

Tomcat’s Security Reports page: 
http://tomcat.apache.org/security.html. This page displays a 
list of the known security vulnerabilities for each version of 
Tomcat as illustrated in Fig. 1. Tomcat Release 3.x was 
selected and all the Remote Code Execution (RCE) updates 
within this release were identified and reviewed. This was the 
most time and effort intensive step of our data collection 
process. Please note that our goal was to collect information 
regarding what kind of updates (i.e., patches or code-fixes) are 
applied by the programmers to known RCE vulnerabilities. 
Therefore, for each RCE update found during our search, the 
revision number was selected as presented in the information 
page for that particular revision. Fig. 2 contains the 

 

Fig.1. Tomcat: Security Updates   



information page for Revision 1809921. As can be seen in Fig. 
2, each revision page contains a “path changed” link which in 
turn contains the line(s) of code that were added and/or 
removed to fix/mitigate the reported RCE vulnerability. 

Table I presents a sample set of RCE vulnerabilities in 
Apache Tomcat that were identified and investigated during 
this study.  

2) Android Data Collection  
Similar to Tomcat, for Android we reviewed the Security 

Bulletins page of the Android website 
(https://source.android.com/security/bulletin). From here we 
selected a year and month from the dropdown on the left side 
of the webpage as shown in Fig. 3. Next, we searched for RCE 
updates (see Fig. 4) and clicked on the selected reference 
number which brought up the information page for that 
specific update. The information page for a sample RCE 
update is shown in Fig. 5. By selecting the “diff” link 
(highlighted in yellow in Fig. 5), a page containing the code 
that was added and/or changed to fix/mitigate the reported 
RCE vulnerability was displayed. 

Following the data collection process described above, we 
collected a total of fifty-one (51) RCE updates/patches 
(including both the systems, Tomcat and Android). We 
analyzed these patches to understand if there are certain 
frequently used patterns in these RCE updates/patches. The 
data analysis conducted using the above-mentioned 51 RCE 
updates/patches is presented in Section IV. B.   

IV. DATA ANALYSIS AND RESULTS 

This section presents the results and findings obtained 
from analyzing the data collected during this study. This 
section is organized around the two research questions (RQs) 
that were described in Section III.A.   

A. RQ1: Do software systems suffer from Remote Code 

Execution (RCE) vulnerabilities more frequently when 

compared to the other types of security vulnerabilities? 

As mentioned before, we hypothesized that RCE 
vulnerabilities are the most frequently found vulnerabilities in 
software systems. In order to evaluate our hypothesis, we 
collected the vulnerability-count data from the 
“CVEDetails.com” datasource. This datasource receives its 
vulnerability data through National Vulnerability Database 
(NVD) xml feeds provided by NIST (National Institute of 
Standards and Technology). We collected the vulnerability-
count data for the top-5 vulnerability types for the recent five 
(5) years, i.e., from the year 2015 to 2019 (please note that 
currently the CVEDetails datasource has vulnerability-count 
data till the year 2019). 

Fig. 6 provides an overview of the data analyzed for RQ1. 
As can be seen in Fig. 6, RCE vulnerabilities were reported 
more frequently than other types of vulnerabilities during the 
years 2015, 2018, and 2019. Even during the other years (2016 
and 2017), RCE vulnerabilities remained in the top-2 most 
reported vulnerabilities.  

Furthermore, in the year 2019, the count of reported RCE 
vulnerabilities (2277) was significantly higher than the count 
of next most reported vulnerability (1593 Cross-Site Scripting 

 

Fig.2. Tomcat: Security Update Details for a Sample RCE Vulnerability 

found in Tomcat 

 
Fig.3. Android: Security Update Reports (Listed by Year) 

 

 
Fig.4. Android: Identifying RCE Vulnerabilities and their Respective 

Updates/Patches 

 

 
Fig.5. Android: Security Update Details for a Sample RCE 

Vulnerability found in Android 

 

 

TABLE I. TOMCAT: SAMPLE SET OF RCE VULNERABILITY 

PATCHES/UPDATES THAT WERE FOUND AND STUDIED 

Common Vulnerabilities and 

Exposures No. (CVE No.) 

Affected 

Versions 

Fixed 

version 

2013-4444 7 7.0.39 

2016-8735 7, 8, 9 9.0.0.M12 

2017-12615 7 7.0.80 

2017-12617 7, 8, 9 9.0.0.M15 

2019-0232 7, 8, 9 9.0.17 

 



vulnerabilities were reported). Therefore, 35.3% of all the 
vulnerabilities reported during the year 2019 were of the type 
RCE (as can be seen in Fig. 6). 

The data analysis described above and displayed in Fig. 6 
clearly shows that software systems often suffer from RCE 
vulnerabilities more frequently than the other types of 
vulnerabilities. This in turn leads to a frequent need for 
programmers to fix RCE vulnerabilities through 
adding/editing lines of code in their software systems (i.e., 
adding updates/patches to mitigate the reported RCE 
vulnerabilities). This motivated us to identify some common 
patterns that are used by programmers when they are trying to 
fix the RCE vulnerabilities (with a focus on RCE 
vulnerabilities in Java-based software systems). The next 
section describes some of the patterns that we identified 
during this study.            

B. RQ2: What types of patches (i.e., code-fixes) are usually 

added to mitigate the known RCE vulnerabilities in 

Java-based software systems? 

As described in Section III.B (Data Collection), we 
identified a total of fifty-one (51) patches/updates that were 
made to fix RCE vulnerabilities in two Java-based software 
projects (Tomcat and Android). These patches are essentially 
changes/edits that made to lines of code to mitigate or fix a 
reported security vulnerability. Our primary goal with RQ2 
was to identify and list some code-fix patterns that were used 
frequently to mitigate reported RCE vulnerabilities. 

For a study such as ours, projects such as Tomcat and 
Android are a great resource as they highlight exactly what 
code changes/edits were made in order to fix a vulnerability. 
As an example, in Fig. 7, in order to fix the vulnerability titled 
CVE-2019-0232, the following variable was added: 
cgiServlet.invalidArgumentDecoded. 

Similar to the process described above, we analyzed the 
updates/patches (i.e., code changes) that were applied to all 
fifty-one (51) RCE vulnerabilities that were part of this study. 

Next, in order to find if there were similarities (i.e., 
patterns) between the coding changes that were made by the 
programmers in order to fix the RCE vulnerabilities, we 
converted the code-changes (patches/updates) into 
pseudocode. After converting the code-changes into 
pseudocode, we found that the code-changes (patches) could 
be classified into five (5) categories or patterns.  

The five types of code-changes or updates (identified as a 
result of our analysis of 51 RCE vulnerabilities) that can be 
used to fix or mitigate a majority of RCE vulnerabilities are 
described as follows: 

RCE Update Type 1 – Check if the Packet Size is a 
Positive Integer: For this update the programmer added an If 
Statement to check that the packet size was a positive integer 
(i.e., not negative or zero). That is, check if the source buffer 
contained enough bytes to copy the packet and check that the 
packet size does not exceed the destination buffer. The 
pseudocode for this type of update is shown in Table II.                       

RCE Update Type 2 – Checking for the Proper Variable 
Size: Another common update made by the programmers was 
that they checked for the proper size. In this If statement, they 
check if the variable is greater than the max size. And if the 
variable is greater than the max size, then set the variable to 
the max size. The pseudocode for this type of update is shown 
in Table III. 

RCE Update Type 3 – Applying an Offset: In many 
reported RCE vulnerabilities, it was found that the buffer is 
not properly calculated causing a memory overflow. To fix 
this, they adjusted the calculation by dividing the offset. The 
pseudocode for this type of update is shown in Table IV. 

RCE Update Type 4 – In another commonly used 
patch/update for RCE vulnerabilities, the programmer moved 
the If Statement to the top. The intention is to run the fail-
check before creating a new class and assigning the size. The 
pseudocode for this type of update is shown in Table V. 

RCE Update Type 5 – If statement to prevent out of 
bounds in the function: In another common patch/update, the 
programmer added an If statement to check validity of 
pSettings->noOfPatches to prevent out of bounds in the 
function, which can also cause the memory size to be negative. 

 

Fig. 6. Vulnerability-count by Type (for five recent years) 

 

Fig. 7. Code Change (or Patch) Applied to Fix/Mitigate an RCE 
Vulnerability (CVE-2019-0232) in Apache Tomcat 

 

TABLE II. RCE UPDATE TYPE 1 

Pseudocode for RCE Update Type 1 

if ((size <= 0) || ((read - sizeof(var1) - sizeof(var2)) < size) || (sizeof(msg) 

< size)) { 
          return -1; 

} 

 

TABLE III. RCE UPDATE TYPE 2 

Pseudocode for RCE Update Type 2 

if (result->num_val > MAX_ATTR_SIZE) { 

    errorWriteLog; 
    result->num_val = MAX_ATTR_SIZE; 

} 

 

TABLE IV. RCE UPDATE TYPE 3 

Pseudocode for RCE Update Type 3 

 

display->buffer = buffer + (offset / FACTOR); 

 

 



The pseudocode for this type of update (i.e., Update Type 5) 
is shown in Table VI. 

As is evident from the above-mentioned five commonly 
used updates/patches, most of the code updates was to account 
for changes in size of boundaries and buffers. When the size 
was not properly accounted for, it caused errors in the 
application which in turn leads to a potential for bad actors to 
perpetrate a Remote Code Execution (RCE) attack. 

Overall, we believe that the five update types that we have 
identified can provide a good starting point for programmers 
when they are trying to fix/mitigate reported RCE 
vulnerabilities in their Java-based software systems. We 
anticipate that a list of commonly used updates/patches (such 
as the one presented in this study) can improve the efficiency 
of programmers when they are trying to determine the best 
way to fix vulnerable code in their software system.  

V. THREATS TO VALIDITY 

In this section, we describe the major threats to the validity 
of the results found in this study.  

One major validity threat is to the generalizability of our 
results. This is because we have studied RCE vulnerabilities 
and their respective updates/patches in a limited number of 
systems (two systems, Tomcat and Android). Owing to this, 
even though we have been able to locate some viable fixes 
(i.e., updates/patches) for RCE, they may not resolve each and 
every RCE vulnerability. Through our study we saw that many 
instances of RCE vulnerabilities can be mitigated by  fixing 
buffering and boundary issues. At this time, our research is 
limited to Tomcat and Android, and thus there are likely other 
instances of RCE vulnerabilities and their respective 
updates/patches that we have not come across in our research.  

Another limitation arises from the unavailability of public 
vulnerability datasets for software projects. Most software 
projects do not make their vulnerabilities and related fixes 
public (with a few exceptions such as Android and Tomcat). 
The scarcity of vulnerable dataset makes any vulnerability 
related research challenging.  

The authors also note that our findings do not guarantee 
prevention against an RCE attack from a malicious actor (i.e., 
attacker). Our goal is simply to provide a readily usable list of 
updates/patches that can be potentially employed for fixing 
RCE vulnerabilities. The final decision about using the most 
appropriate update/patch has to be made by the programmer 
by conducting a thorough evaluation of the vulnerability they 
are trying to fix.     

VI. DISCUSSION ON IMPLICATION OF RESULTS 

In this section we provide a brief discussion about the 
implications of our findings on programming practices that 
lead to injection of RCE vulnerabilities. Although, our main 
goal in this study was to identify what kind of code-changes 
(i.e., updates/patches) are commonly used to fix RCE 
vulnerabilities, our data analysis also highlighted some 
weaknesses or issues in coding practices (when the software 
systems are being developed). The paragraphs below provide 
a discussion related to such bad coding/programming 
practices that lead to injection of RCE vulnerabilities when the 
software is being developed.    

Overall, we found that the vulnerability landscape for 
remote code execution (RCE) needs to be approached with a 

persistent and analytical approach. We must not only rely on 
advisories but also correlate the weakness types and attack 
vectors that are associated with each vulnerability type. 
Having such insight is meaningful in making informed 
decisions as well as prioritize each vulnerability based on their 
risk factor. Although not every RCE instance will have the 
same weakness type, we learned that some weakness types 
still correlate with the root causes that were found for the 
associated vulnerability. Our research was able to successfully 
identify a root cause (size of boundaries and buffers) that 
frequently leads to injection of RCE vulnerabilities.  

Our research has shown that the opportunity for RCE 
vulnerabilities can be reduced by simply ensuring that buffers 
and boundaries are developed with proper sizing. With this is 
mind, developers can develop more efficient code and avoid 
at least some of the on-going RCE attacks being deployed by 
hackers worldwide. 

VII. CONCLUSION AND FUTURE WORK 

We have conducted a detailed analysis of the 
updates/patches (i.e., code-changes) that were applied by 
programmers to mitigate/fix fifty-one (51) RCE 
vulnerabilities reported in two Java-based software projects: 
Apache Tomcat and Android.  

Based on our analysis, we proposed a list of five common 
updates/patches (see Table II through Table VI) that can be 
used to mitigate or fix a significant majority of RCE 
vulnerabilities in Java-based systems. We believe that our 
findings about these common RCE updates/patches can be 
handy and readily-usable when programmers are trying to 
determine ways or means to fix RCE vulnerabilities in their 
own system. Therefore, we anticipate that our list of common 
RCE updates (shown in Tables II to VI) will help in reducing 
the time that is required by programmers to fix RCE 
vulnerabilities that have been reported in their system. To our 

TABLE V. RCE UPDATE TYPE 4 

Pseudocode for RCE Update Type 4 

status = function(); 

 
         if (status != SUCCESS) { 

             variable1 = NULL; 

             return ERROR; 
         } 

variable1 = new class; 

variable1->size = sizeof(object); 
 

 

 

TABLE VI. RCE UPDATE TYPE 5 

Pseudocode for RCE Update Type 5 

if (noOfPatches > 0) { 

    int target = array[x].targetStartBand + array[x].numBandsInPatch; 
  

    int size = (64 - target) * sizeof(FIXP_DBL); 

    if (!useLP) { 
        for (i = startSample; i < stopSampleClear; i++) { 

            function1(&array2[i][target], size); 

            function1(&array3[i][target], size); 
        } 

    } else 

        for (i = startSample; i < stopSampleClear; i++) { 
            function1(&array2[i][target], size); 

        } 

} 
 

 



knowledge, this is the first study of its kind that has focused 
on analyzing RCE vulnerabilities and their relevant 
updates/patches.     

The results from this initial investigation are anticipated to 
be beneficial in reducing RCE attacks and hence the results 
motivate further research in the area. We plan to extend our 
research to other programming languages and systems to 
determine if such update (i.e., code-fix) patterns exist in 
systems coded in languages such as Python, PHP, C#, etc. 
Once this research is extended to other languages and systems, 
the natural evolution of this research is to study more 
vulnerabilities such as Elevation of Privilege, Information 
Disclosure, and SQL Injection in the future. In closing, our 
intent is to continue to learn about the nature of vulnerabilities 
and how to mitigate/fix them so that we may enhance our 
research to help prevent future exploits or attacks. 
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